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Topological shape analysis of chain molecules: 
An application of the GSTE principle 
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One of the fundamental tools of the molecular topology program is the GSTE 
principle: geometrical similarity is treated as topological equivalence. The molecular 
topology (MT) approach to the description of molecules and the reaction topology (RT) 
approach to the description of reactions are the two main aspects of the topology 
program (TP), a research program for the reformulation and description of some basic 
concepts of chemistry within a differential and algebraic topological framework. In this 
report, a new application of the GSTE principle to the shape analysis of chain molecules, 
in particular, of chain biomolecules is described, with special emphasis on the dynamic 
aspects of conformational changes and folding processes of proteins. 

1. Introduction 

The study of the relations between the chemical properties and three-dimensional 
shapes of chain molecules, in particular, of chain biomolecules such as polypeptides, 
proteins, or DNA, is of fundamental importance in modem chemistry and biochemistry 
(for a sample of references see, e.g. refs. [1-17]). Many chemical properties are 
dependent on the topological shape properties of these molecules, and topological 
shape characterization techniques are becoming important tools of both theoretical 
and applied chemical research. Among the three-dimensional shape analysis methods 
of tertiary structures of proteins, the method of approximate polyhedral fitting 
[15, 16] provided an early, essentially topological classification technique that was 
followed by several, more general topological methods for both static and dynamic 
shape analysis [18-23]. 

Topological methods have several advantages over more conventional, 
geometrical approaches. A fundamental consideration is that molecules are not 
geometrical but topological objects [24], since most small geometrical changes do 
not alter the identity of molecules. In dynamic processes, such as confonnational 
rearrangements or chemical reactions, many geometrical shape features may change 
but some of the essential, topological shape properties can remain invariant. These 
invariant shape features and the domains in configuration space where these features 
are preserved can be characterized by algebraic topological means, suitable for 
algorithmic shape analysis by computer programs. 
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In this study, we shall describe an application of the GSTE principle to 
"shape globe invariance maps" (SGIM) of protein folding patterns, and a planar 
shape map as well as the associated shape matrices and shape graphs derived from 
the SGIM. The actual (P, W)-shape types [24] will be defined as follows. The shape 
representation P will be chosen as the protein backbone projected on tangent planes 
of  a shape globe enclosing the protein. The topological shape descriptor W will be 
chosen as the pattern of invariance domains on the globe and on the associated 
planar map where within each domain the "fuzzy" crossing pattems of the projected 
backbone images on the tangent plane (with tangent points within the domain) are 
topologically equivalent. 

In general, the shape representation P may involve some parameters, taken 
as the components of a k-dimensional vector p of some vector space P, P = P(p). 
In our present case, we shall consider only one such parameter p, which will be 
regarded as representing an energy bound p = e, the energy available to the protein 
above a reference energy, for example, above its absolute energy minimum or above 
one of  its local energy minima. The extreme case of e=  0 corresponds to the 
classical, geometrically defined minimum energy conformation of  the protein. For 
small, positive e values, the protein enjoys a limited conformational freedom, allowing 
it to change its shape slightly, but not too drastically, from the reference (minimum) 
energy conformation. As the energy parameter e increases, the conformational freedom 
also increases, leading to the possibility of more prominent shape variations, that 
is, to a "fuzzier" shape of the protein backbone. This fuzziness in shape can be 
treated by the techniques proposed for more general "fuzzy" conformational problems 
[25-27]  and for a fuzzy set description of approximate symmetry ("syntopy" [28]), 
combined with the topological shape characterization methods. The approach provides 
a topological fuzzy set characterization of the dynamic shape problem of  protein 
backbones. 

2. Fuzzy shape globe invariance maps (FSGIM) 

Consider the backbone of a protein, a curve in three-dimensional space, as 
the primary shape representations p0. Enclose p0 within a sphere S, placing the 
center of  mass of the molecule so that it coincides with the center of  the sphere S. 
One may choose the smallest such sphere; however, the analysis leads to identical 
topological results for any sphere that encloses p0 and is centered on the center of  
mass of  the molecule. Project pO onto a tangent plane R(s) at each point s of  the 
sphere S by beams perpendicular to R(s). The projection P'(s) of the shape representation 
P in each tangent plane R(s) can be characterized topologically, leading to a family 
of topological descriptors 

F(s) = {I(i), i = 1 . . . . .  k}. (1) 

In earlier works [19-22],  these topological descriptors have been chosen in a 
variety of  ways, for example, as multigraphs or as knots compatible with (the 
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slightly modified) crossing patterns of the projected image [19-21] or neighbor 
relation graphs and matrices of the visible domain patterns of the enclosed 
molecule [22]. 

A family Fj(s) = {I(i), i = 1 . . . . .  k} of topological descriptors I(i) remains 
invariant within some domain Cj of points s of the sphere S. Usually, there are only 
a finite number of different Fj(s) = {1(i), i = 1 . . . . .  k} sets for each fixed protein 
backbone pO and each such projected shape invariance domain Cj may be regarded 
as analogous to a country on a global map. The families Fj(s) generate the shape 
globe invariance map SGIM, or simply the shape globe map on S. We emphasize 
an important feature of these shape globe maps: the set F(s) = {I(i), i = 1 . . . . .  k} 
of topological descriptors assigned to each point s of the sphere S provides information 
on a global property of the enclosed molecule, in our case, of the enclosed 
backbone p0. 

In fig. 1, two of the essential steps of the SGIM method are shown, with a 
special choice for shape descriptor W, taken as a graph of the crossing pattern. The 
first step shown is the projection of a protein backbone to tangent planes of a shape 
globe S and the generation of the graphs (possibly multigraphs or pseudographs) of 
the crossing patterns associated with each tangent point s. The second step is the 
generation of invariance domains Cj of these graphs on the shape globe S. This 
approach leads to a two-dimensional representation of the shape of the molecular 
backbone on a spherical surface. 

The shape globe invariance maps SGIM on the shape globe S can also be 
characterized topologically. One such characterization is by their shape groups 
[29, 30], as defined by a specified truncation pattern obtained by eliminating invariance 
domains Cj of certain Fj(s) types. An alternative method is based on the neighbor 
relations of the invariance domains Cj on the global map SGIM, leading to treatments 
analogous to the shape graph [31] and shape matrix methods [32]. In addition to 
the actual, topological shape information, the information on the size of invariance 
domains on the global map SGIM may also be included in the description, for 
example, by the ordering of the domains according to their size. These graphs and 
matrices, possibly augmented with size information, are regarded as alternative 
shape codes based on the shape globe invariance map method. 

Within an earlier approach [33], information on the dynamic shape properties 
of a molecule has also been included within the above framework, and here we shall 
present two generalizations of this approach. Both generalizations are applicable to 
a variety of choices for shape representation P and shape descriptor W within the 
SGIM framework. For example, one may take P as some molecular surface enclosed 
within the shape globe S and consider a topological shape descriptor W such as a 
pattern of domains visible when projected on the tangent planes of S. Nevertheless, 
in this communication we shall consider explicitly the case of protein backbones 
and the generated topological descriptions of projected crossing patterns. 

The first generalization is a direct extension of the method from two competing 
molecular configurations to a family of a continuum of configurations, such as 
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Fig. 1. Two essential steps for the generation of SGIMs. The first step 
is the projection of a protein backbone to tangent planes of a shape 
globe S and the generation of the graphs (possibly multigraphs or 
pseudographs) of the projected crossing patterns associated with each 
tangent point s, taken as a special choice for shape descriptor W. In the 
second step, the invariance domains Cj of these graphs are generated on 
the shape globe S. The resulting SGIM is a two-dimensional representation 
of the shape of the molecular backbone on the spherical surface S. 

those occurring along reaction paths or within conformational domains. If the 
protein backbone undergoes a major rearrangement from conformation K to 
conformation K',  then the SGIM may change from SGIM(K) to SGIM(K'). A given 
point s on the shape globe S may become re-assigned from the invariance domain 
Cj(K) for conformation K to a different invariance region Cj,(K') for conformation 
K',  as the conformational change progresses. A new label can be assigned 
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to points s of the sphere "contested" by different invariance domains Cj and Cj,. One 
can regard these formal "no man's land" areas, that is, the intersections 

ck = cj(K) cj,(K') (2) 

on the shape globe S as new, separate domains. 
In general, along a configurational change K to K', or within a configurational 

domain, such as a catchment region, a whole continuum M'  of nuclear arrangements 
K may occur. For any given point s on the shape globe S, one may list all shape 
invariance domains 

c y , ,  . . . .  (3) 

which contain s for any one of the nuclear configurations K of the family M'. 
Usually, there are only a finite number of different lists, and point s with the same 
list can be collected into equivalence classes denoted by 

C j ,  j , , j , , ,  . . . (4) 

for each list of type (3). Then these new subsets C j ,  j , j - , . . ,  of shape globe S 
generate a new map on S that can be characterized by the same methods described 
above. The shape graphs and shape matrices of the resulting dynamic shape globe 
maps (possibly augmented with size information) are new shape codes, characterizing 
the dynamic shape properties of the molecule, if the molecule is confined within 
the conformational domain M'. 

The second generalization involves an energy threshold e and a fuzzy set 
approach. Consider a reference configuration K, for example, that of a local (or 
global) energy minimum for the molecule, and the associated map SGIM(K) on the 
globe S. We may consider SGIM(K) as a secondary shape representation P and one 
may select an appropriate topological shape descriptor W, for example, neighbor 
relation graph gk(SGIM(K)) or shape matrices Mk(SGIM(K)) of domains Cj of 
SGIM(K), where k is a serial index. Consider now various changes of the configuration 
K. The kth graph g~(SGIM(K)) or the kth matrix Mk(SGIM(K)) remain invariant for 
some conformational changes within M', but they may change with extensive 
configurational changes. It is possible to generate the corresponding gk(SGIM(K))- 
preserving (or the Mk(SGIM(K))-preserving) invariance domains M~, of the family 
M'  of configurations. This provides a partitioning of family M', somewhat similar 
to the symmetry domain partitioning of the configurational space M, an analogy we 
shall exploit below. We may also consider the energy constraint represented by the 
threshold e in a manner similar to that in the syntopy model [28]. If e is small, then 
only small conformational flexibility is allowed, hence the assignment of an SGIM 
to the corresponding energy-constrained, dynamic molecular species involves only 
a small degree of fuzziness. By contrast, if e is large, then the assignment of any 
specific SGIM to the molecular species is becoming more fuzzy. The above 
considerations can be precisely formulated by formally replacing the point symmetry 
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invariance domains Gi of the syntopy model [28] with the gk(SGIM(K))-preserving 
(or the Mk(SGIM(K))-preserving) invariance domains M~ of  the family M" of 
configurations. With this replacement, the exact derivation of the entire section 3 
of  ref. [28] can be repeated, leading to a fuzzy membership function /.t(K, k) for 
gk(SGIM(K)) graphs (or Mk(SGIM(K)) matrices) and to an energy-dependent, fuzzy 
set characterization of molecular shape variations in dynamic processes. 

. The rate of shape change along conformational paths using shape globe 
invariance maps 

The approach described below is generally applicable to any shape globe 
representation; however, here we shall consider explicitly the case of protein backbones. 
Consider a configurational change along a formal reaction path p(t) from 

to 
p(0) = K (5) 

p(1) = K',  (6) 

where the usual parametrization of the path is considered [26], taking parameter 
values t from the unit interval I = [0, 1]. Parameter t along the path can be chosen 
as proportional to the arc length in configurational space M, where the conventional 
metric of space M is applied [26]. Alternatively, one may consider a parametrization 
t proportional to time, based on the time scale of typical conformational changes 
in protein backbone folding processes. In either case, the rate of shape change along 
the conformational path p(t) can be defined in terms of the rate of  change of areas 
A(Cj) of the Cj invariance domains on the SGIM. Note that in general the areas of 
different invariance domains may change at different rates, and some invariance 
domains may entirely disappear at intermediate stages of the conformational change. 
For this reason, not each invariance domain is suitable to give a proper indication 
of the rate of shape change. One can choose a favored invariance domain Cj, that 
persists along the entire conformational change and follow the shape variation by 
formally taking 

d(shape')/dt = dA(Cj,)/dt (7) 

as the rate of shape change. It is clear, however, that this choice is ultimately 
arbitrary. According to a somewhat less arbitrary definition, one may take the sum 
of  absolute values of the rates of all area changes: 

d(shape)/dt = ~,ldA(Cj)/dtl. (8) 
J 

The above quantity is well defined along the entire conformational path p(t). It 
allows one to provide a quantitative measure for interrelating the extent and speed 
of conformational changes, as measured by displacements in the metric configurational 
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space M (or by other, less general methods), with the extent and speed of changes 
of the essential, topological shape properties. 

. Planar representations of shape globe invariance maps and fuzzy shape globe 
invariance maps 

In order to simplify the analysis and to obtain an easily visualizable and 
recognizable description, it is advantageous to generate a planar representation of 
SGIMs. One such technique is illustrated in fig. 2. The shape globe S with the 
SGIM on its surface is placed within a hemisphere H of radius twice that of S. (Note 

Planar representation of Shape Globe Invariance Map ) 
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/ 
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Fig. 2. A planar representation P(SGIM) of the shape globe invariance map. The shape globe 
S with an SGIM is placed within a hemisphere H of radius twice that of S, over a plane 
parallel with the perimeter of H, as shown. (For simplicity, only one invariance domain Cj 
is indicated.) From the "north pole" n of S, a line is issued to each point s ~: n of S, piercing 
H at a unique point h. A second line issued from point h perpendicular to the plane defines 
a unique point p of the plane, defining a bijection P : Skn ---> D between the punctured shape 
globe S~n and an open disc D of the plane. The perimeter of the hemisphere H, as well as 
the perimeter of the open disc D, are assigned to the north pole n of the shape globe S, 
completing the generation of a planar representation of the entire SGIM of the shape globe S. 
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that only one invariance domain Cy of the actual SGIM is shown in the figure.) For 
simplicity, we assume that H is placed so that it is concave from above and the 
perimeter of H is horizontal. Then, S is placed to the bottom of H, and a horizontal 
plane is placed below H. The maximum point of S is identified as the "north pole" 
n. For each point s ~ n of S, the line issued from n and passing through s pierces 
H at a unique point h. The line issued from point h perpendicular to the plane 
defines a unique point p of the plane. This defines a bijection 

P : S \n  ---> D (9) 

between the punctured shape globe S\n and an open disc D of the plane. Furthermore, 
we can assign the perimeter of the hemisphere H, as well as the perimeter of the 
open disc D to the north pole n of the shape globe S, completing the generation of 
a planar representation of the entire shape globe S. 

In the planar representation P(SGIM), all neighbor relations between the projected 
invariance domains P(C i) are going to be the same as they are on the original SGIM 
on the shape globe S, with the exception of the special case where a boundary point 
of a Cj invariance domain falls on the "north pole" n of S. In this case, all projected 
P(Cj) domains which have boundary points falling on the perimeter of the disc D 
are also regarded as neighbors, in addition to the usual neighbor relations of projected 
domains within the disc D. Using this approach, the topological pattem of the interrelations 
among the invariance domains (although not the ordering of invariance domains by 
their sizes on the shape globe S) can be obtained directly on the planar disc D. 

5. Summary 

Two generalizations of the earlier shape globe invariance map technique are 
presented, designed for applications to the study and nonvisual shape analysis of 
folding patterns of protein backbones. The first generalization provides a characterization 
of all shapes occurring within a conformational domain, that is, for an infinite but 
constrained family of arrangements of the molecular backbone. The second 
generalization provides a description of some of the dynamic aspects of the protein 
folding problem based on an energy-dependent fuzzy set representation analogous 
with the syntopy model of approximate point symmetry, developed earlier. A measure 
is proposed for the rate of shape change in conformational processes, based on the 
rate of area changes of invariance domains on shape globes. In addition, a planar 
description of shape globe invariance maps is proposed, using a simple technique 
that facilitates the study and visualization of results of all shape globe based analyses. 
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